home *** CD-ROM | disk | FTP | other *** search
- /* randist/binomial.c
- *
- * Copyright (C) 1996, 1997, 1998, 1999, 2000 James Theiler, Brian Gough
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
- #include <config.h>
- #include <math.h>
- #include <gsl/gsl_rng.h>
- #include <gsl/gsl_randist.h>
- #include <gsl/gsl_sf_gamma.h>
-
- /* The binomial distribution has the form,
-
- prob(k) = n!/(k!(n-k)!) * p^k (1-p)^(n-k) for k = 0, 1, ..., n
-
- This is the algorithm from Knuth */
-
- unsigned int
- gsl_ran_binomial (const gsl_rng * r, double p, unsigned int n)
- {
- unsigned int i, a, b, k = 0;
-
- while (n > 10) /* This parameter is tunable */
- {
- double X;
- a = 1 + (n / 2);
- b = 1 + n - a;
-
- X = gsl_ran_beta (r, (double) a, (double) b);
-
- if (X >= p)
- {
- n = a - 1;
- p /= X;
- }
- else
- {
- k += a;
- n = b - 1;
- p = (p - X) / (1 - X);
- }
- }
-
- for (i = 0; i < n; i++)
- {
- double u = gsl_rng_uniform (r);
- if (u < p)
- k++;
- }
-
- return k;
- }
-
- double
- gsl_ran_binomial_pdf (const unsigned int k, const double p,
- const unsigned int n)
- {
- if (k > n)
- {
- return 0 ;
- }
- else
- {
- double a = k;
- double b = n - k;
- double P;
- double Cnk = gsl_sf_choose (n, k) ;
-
- P = Cnk * pow (p, a) * pow (1 - p, b);
-
- return P;
- }
- }
-